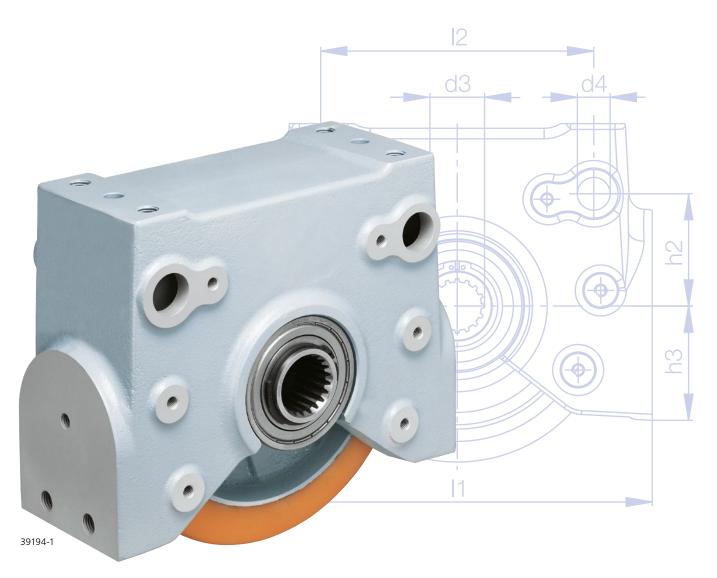


Demag LRS travel wheel system

Robust and universal solution for a wide range of applications

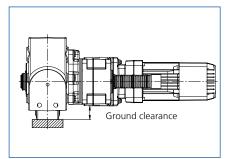


Demag LRS 200 / LRS 250 / LRS 350 travel wheel system – the simple solution for travel speeds up to 240 m/min

No need for additional design work, tailored to meet your needs and ready to install

Using the Demag LRS travel wheel system, you can meet your drive requirements quickly and reliably for transport, feed, transfer or merge applications. We can supply you with the right travel wheels and drive units also for your application: ready for installation, of proven design and attractively priced – from stock. The Demag LRS system is suitable for wheels loads up to 6500 kg and travel speeds up to 240 m/min. Simple selection of the components makes it the ideal assembly for engineers who want to build their own solution for a wide variety of travel applications.

The extremely robust spheroidal-graphite cast block housing has five precisely machined connecting surfaces and offers a range of connection variants. They are designed for top connection as standard. The required high-tensile bolt connections included in the scope of delivery are zinc-coated to provide a special surface protection.


Centre bore holes in the top connection arrangement eliminate the need for time-consuming re-alignment when an LRS unit is replaced. Alternatively the LRS system can also be adapted to your superstructure by means of a pin connection. For this purpose, we also offer a pin connection set. The LRS system requires virtually no maintenance and can be operated at temperatures from -10 to +40 °C. The primer coat in RAL 7001 will also accept a paint finish, enabling you to paint the LRS system as you wish.

LRS...A spheroidal-graphite cast-iron travel wheel with two flanges

LRS...F travel wheel with Hydropur tyre

LRS side view shows good ground clearance

The travel wheel designs

Two travel wheel designs are available:

- spheroidal graphite cast iron travel wheel with two flanges and
- travel wheel with a Hydropur tyre.

Thanks to the integrated graphite nodules, the spheroidal-graphite cast iron wheel is self-lubricating and offers high resistance to wear and low rolling resistance. It also features effective damping characteristics for smooth travel that is particularly gentle on the track. 10 % of the permissible load capacity can be accommodated as axial force by the wheel flanges. The travel wheel featuring a Hydropur tyre is particularly suitable for highly dynamic applications (high acceleration, friction-wheel travel drives, etc.) due to its high friction coefficient. Its good damping characteristics provide for quiet operation.

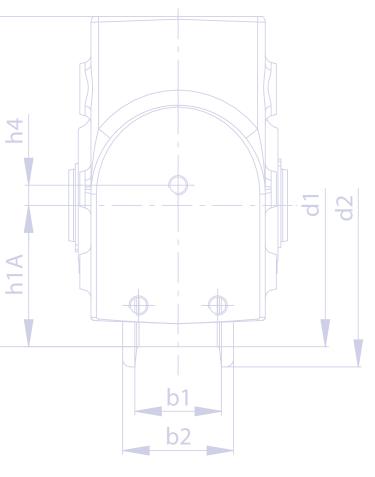
The drive

Above all, Demag offset and angular geared motors are suitable as travel drives. With a hollow shaft featuring involute splines, the gearbox is connected to the LRS system by means of a shaft-mounted system and an optimised torque bracket. Depending on the mass to be moved and the required travel speed, various gearbox sizes with corresponding travel motors are available. All travel wheels feature splined hubs to DIN 5480.

The LRS system offers good ground clearance, which is particularly important for ground-level driven travel units running on rails. Drives or a rotary encoder can also be retro-fitted at any time.

Your advantages at a glance

Versatile modular system


- Three sizes: LRS 200, LRS 250 and LRS 350
- Push travel or with standard travel drives, as an individual or central drive arrangement
- Can also be extended quickly and inexpensively at a later date
- Optional fittings
 - horizontal guide
 - buffers
 - pin connection set
 - rail sweeping system
- Laser alignment device

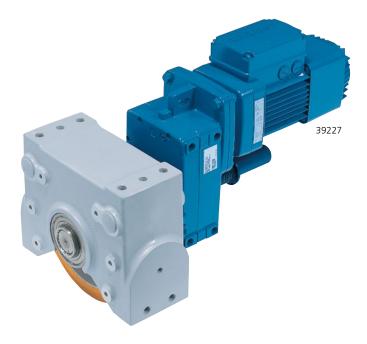
Practical design

- Particularly robust thanks to innovative design
- Good ground clearance
- Maintenance-free travel wheel bearing arrangement

Simple handling from the start

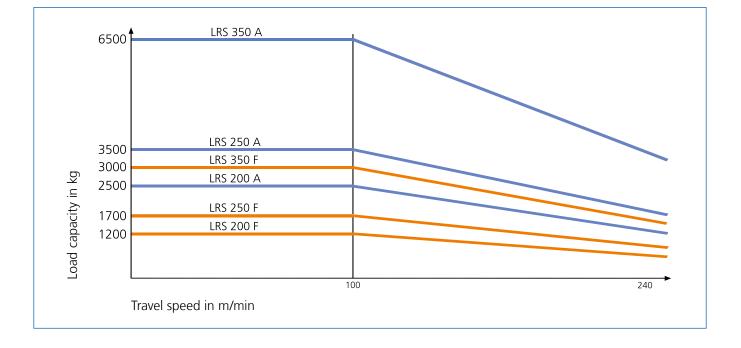
- Simple and understandable documentation
- Simple selection using tables or menu-guided software tools
- CAD files of the individual components facilitate design of your application
- Rapid installation

Performance for your needs

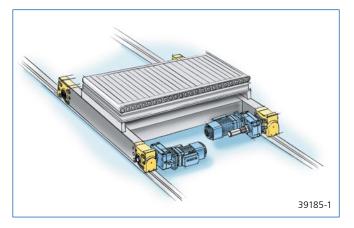

- Inexpensive solution for your travel application
- Standard product guarantees short delivery times with high availability
- Consistently high quality thanks to series production

System expertise

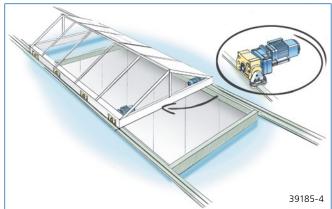
- One contact partner for the entire travel unit
- Decades of experience in travel unit design


Load capacity dependent on the travel speed

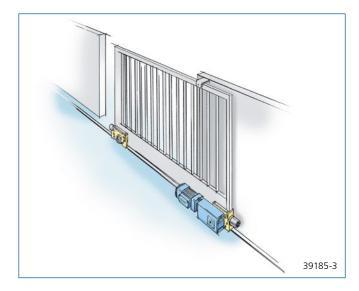
The specified wheel loads refer to speeds of up to 100 m/min. At higher speeds – up to 240 m/min – the wheel load has to be reduced. If travel wheels with Hydropur tyres are operated under load for longer periods of time at standstill (> 2 hours), their load capacity is reduced by 50 % due to the deformation that occurs.


Load capacity	Size				
	LRS 200	LRS 250	LRS 350		
Spheroidal-graphite cast-iron flanged wheel (LRS A)	2500 kg	3500 kg	6500 kg		
Travel wheel with Hydropur-tyre (LRS F) $^{\mbox{\tiny 1)}}$	1200 kg	1700 kg	3000 kg		

1) The specified load capacities of the travel wheels with tyres apply for an ambient temperature of 20 °C. The load capacity decreases at higher temperatures by 10 % for every 10°

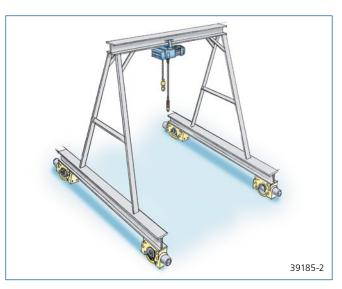

For a wide range of requirements and applications

The Demag LRS travel wheel system quickly provides you with efficient solutions for a wide variety of requirements. **For example ...**

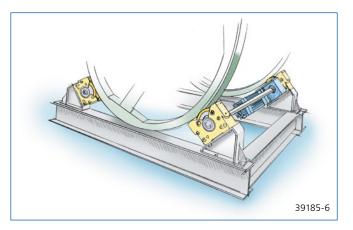


... for transfer carriages

In addition to many other possible designs, two standard individual drives power this rail-guided four-wheel carriage.



... for building elements such as roofs, walls, floors Travel wheels fitted with Hydropur tyres guarantee smooth travel characteristics. Two individual drives ensure smooth travel – even for large spans. The horizontal guide rollers provide reliable guidance of your structure.


... for sliding gates

This gate is guided by spheroidal-graphite cast-iron travel wheels with flanges on a rail. An angular geared motor serves as a particularly space-saving drive for this application.

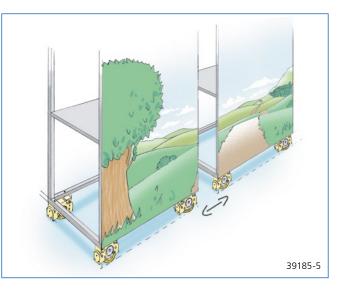
... for workshop cranes

of portal design fitted with four LRS travel wheels units with Hydropur tyres guarantee that loads are moved by hand quietly and with ease.



... for turning devices

The installation shown here features a stationary LRS system used as a central drive arrangement. The high friction values required in such applications, are achieved by means of travel wheels fitted with Hydropur tyres. The opposite bearing arrangement also consists of an LRS system.



... for sweep arms in sewage treatment plants The sweep arm is driven by an LRS system which is fitted with Hydropur tyres and runs on a concrete surface at ground level. The arm rotates over a large radius and is guided by a central pin arrangement.

... for suspension cranes, bridge viewing devices, cleaning platforms etc.

LRS systems with travel wheels featuring Hydropur tyres as friction wheel travel drives can be adapted to your specific design requirements.

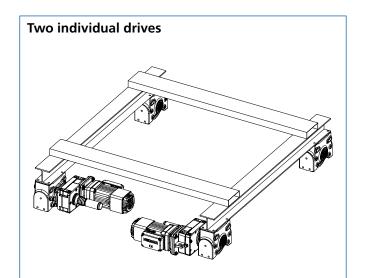
... for theatre decoration and large sets

Four-wheel carriages featuring travel wheels fitted with Hydropur tyres ensure that stage elements are moved quickly and silently throughout the performance thanks to motions performed by hand at ground level.

Ideal for four-wheel carriages and other design solutions

Optimum combination

The Demag LRS travel wheel system and line-fed Demag geared travel motors offer unbeatable benefits: They are perfectly matched and of compact design; they offer outstanding reliability and are easy to install.


The LRS travel wheel system is not only ideally suited for rail-mounted, driven four-wheel carriages. Above all, it enables you to create your own design solutions. Whether your planned design includes a motor that drives two travel wheels (central drive arrangement), or separately driven travel wheels (two single drives) – Demag travel drive solutions from the modular system are available to meet your particular needs. The Demag torque bracket also enables variable connection of the geared motor to the travel wheel system. Whether arranged on their side, upright or stepped at angles, Demag travel drives can be used for individual solutions that can be adapted to meet specific requirements.

59250

The standard **individual drive** arrangement consists of

- a pole-changing ZBF travel motor with an offset gearbox. The geared motor features IP 54 enclosure.
- a shaft which connects the LRS and the gearbox by means of its splined profile. The unused motor-side shaft end can be fitted with the shaft protection included in the supply.
- a torque bracket as well as the required installation material.

Compact, strong and precise

The torque bracket design ensures that the drive torque is transferred from the gearbox to the LRS system without any radial forces.




A central drive shaft set can be ordered in two basic lengths for **central drive arrangements**. The set includes:

- a connecting shaft
- a splined shaft connector
- installation material and shaft protection.

The connecting shaft as well as the shaft protection tube can be shortened when fitted to achieve individual track gauge dimensions. Central drive shaft sets are available for track gauge dimensions up to 1,500 mm and 2,900 mm. Demag ZBF travel motors are flywheel drives, which guarantee smooth acceleration and braking characteristics in line-fed operation.

With a wide, finely graduated transmission ratio range, the offset gearbox integrated into the compact direct drive provides good ground clearance. The spur wheel arrangement in the parallel-shaft gearbox results in a favourable dimension between the input and output shafts, which also makes it possible to implement a central drive arrangement.

Find the right drive for your application

The selection tables show standard drives for line-fed operation (400 V, 50 Hz) for typical speeds. Drives for inverter operation, other or higher speeds on request.

To find the right drive for your application, proceed as follows:

- determine the total mass to be moved
- select the size, travel wheel design and number of travel wheels (consider the maximum load capacity of each LRS)
- determine the drive type: individual or central drive arrangement
- the total mass is driven by one drive on a four-wheel carriage with a central drive arrangement
- half of the total mass is driven by one drive on a four-wheel carriage with single-drive arrangements
- The drive combinations (11-65) corresponding to the required travel speed and mass can be read from the tables. Simply use this number to find the selected combination in the order list (see page 21).

* Figures in brackets indicate the low travel speed of the pole-changing motor

** Central drive arrangement not possible

Drives for spheroidal-graphite cast-iron wheels with flanges

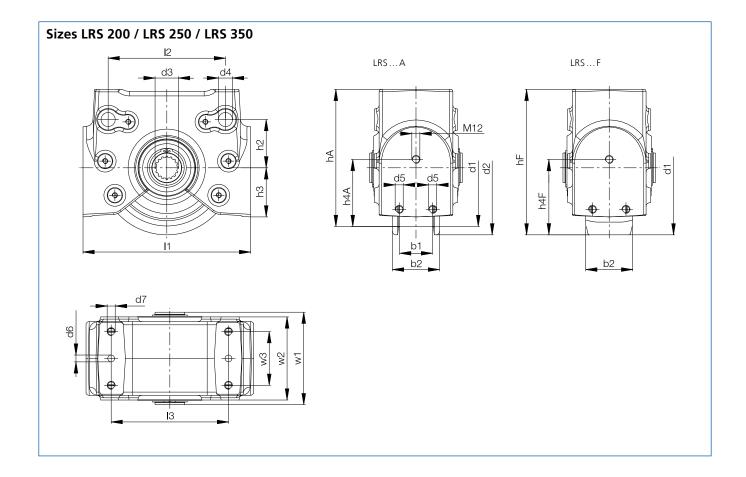
	LRS 2	200 A,	Ø 175 r	nm, R _{max} =	= 25()0 kg	
				Speed v in m	/min		
		12.5	.5 (3.1)* 40 (10)*			80 (20)*	
	3000					15	
	4000	1	1**	13**		61	
	5000						
_	6000						
ŗ	7000						
/e ii	8000			14			
driv	9000		12				
Jer	10000						
Mass per drive in kg	11000						
Š	12000						
	13000						
	14000						
	15000						
	16000						
Dri	ve combina		Gea	arbox		Motor	
	11		AMK	(20 TD		ZBF 63 A 8/2	
	12		AMK	30 TD		ZBF 71 A 8/2	
	13		AMK	(20 TD		ZBF 80 A 8/2	
	14		AMK	30 DD	ZBF 90 B 8/2		
	15		AMK	30 DD	Z	ZBF 100 A 8/2	

Drives for travel wheels with Hydropur tyres

	LRS 2	200 F,	Ø 200 r	nm, R _{max} =	: 12(00 kg			
			Speed v in m/min						
		12.5	(3.1)*	40 (10)*		80 (20)*			
	1000			22**		24			
	1500			22		24			
	2000								
Mass per drive in kg	2500		21						
ēir	3000		21			25			
driv	3500			23		25			
er (4000			25					
ssp	4500								
Ма	5000								
	5500								
	6000								
	6500								
	7000								
Dri	ve combina		Ge	arbox		Motor			
	21		AMI	< 30 TD		ZBF 63 A 8/2			
	22		AMI	< 20 TD		ZBF 71 A 8/2			
	23		AM	< 30 DD		ZBF 90 B 8/2			
	24		AM	< 30 DD		ZBF 90 B 8/2			
	25		AMK 30 DD ZB			ZBF 100 A 8/2			

	LRS 2	50 A,	Ø 220 r	nm, R _{max} =	= 35	00 kg
				Speed v in m	/min	
		12.	5 (3.1)* 40 (10)*			80 (20)*
	3000					35**
	4000					
	5000	3	31**	33**		
Ð	6000					
i.	7000					
Mass per drive in kg	8000					
rd	9000					
be	10000					
lass	11000					
2	12000		32	34		
	13000		52	54		
	14000					
	15000					
	16000					
Dri	ve combina		Ge	arbox		Motor
	31		AMK	(30 TD		ZBF 63 A 8/2
	32		AMK	(40 TD		ZBF 71 A 8/2
	33		AMK	30 DD		ZBF 90 B 8/2
	34		AMK	40 DD		ZBF 100 A 8/2
	35		AMK	30 DD		ZBF 100 A 8/2

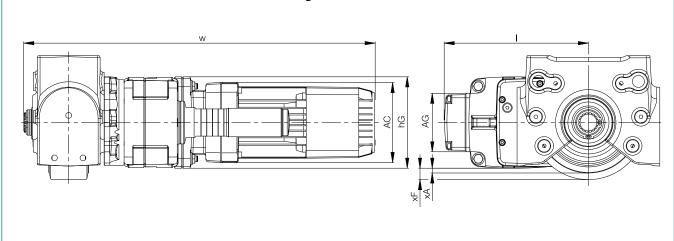
	LRS 3	350 A,	Ø 315 r	nm, R _{max} =	= 65	00 kg		
				Speed v in m	/min			
		12.	5 (3.1)*	40 (10)*		80 (20)*		
	9000							
	10000							
	11000							
6	12000							
i Ľ	13000					55		
ve	14000							
dri	15000		52	54				
Mass per drive in kg	16000							
ass	17000							
Σ	18000							
	19000							
	20000							
	21000							
	22000							
Dri	ve combina		Ge	arbox		Motor		
	52 / 52B		ADK	50 TD		ZBF 80 A 8/2		
	54/54B		ADK	50 DD	ZBF 100 A 8/2			
	55 / 55B		ADK	50 DD	ZBF 132 A 8/2			


B = Drive combination for pin connection

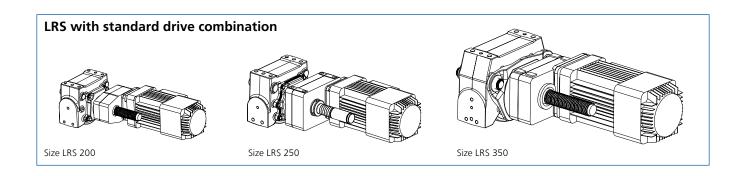
	LRS 250 F, Ø 250 mm, R _{max} = 1700 kg											
		12.	5 (3.1)*	40 (10)*		80 (20)*						
	1000											
	1500											
	2000		11**	43**		45**						
kg	2500	2	+1	45"^		45" "						
Mass per drive in kg	3000											
ŗ,	3500											
ēro	4000											
ss p	4500											
Ма	5000											
	5500		42	44								
	6000		42	44								
	6500											
	7000											
Dri	ve combina			arbox		Motor						
	41		AM	< 30 TD		ZBF 63 A 8/2						
	42		AM	< 40 TD		ZBF 71 A 8/2						
	43		AMk	K 30 DD		ZBF 80 A 8/2						
	44		AMk	(40 DD	ZBF 90 B 8/2							
	45		AMk	K 30 DD		ZBF 100 A 8/2						

	LRS 3	850 F,	Ø 350 r	nm, R _{max} =	300)0 kg	
				Speed v in m	/min		
		12.5	5 (3.1)* 40 (10)*			80 (20)*	
	5000						
	5500						
	6000						
ıkg	6500						
ein	7000						
lri∖	7500		62	64		65	
Mass per drive in kg	8000		02				
ssp	8500						
Ma	9000						
	9500						
	10000						
	10500						
	11000						
Dri	Drive combination			arbox		Motor	
	62 / 62B		ADk	(50 TD	ZBF 80 A 8/2		
	64/64B		ADk	(50 TD	ZBF 90 B 8/2		
	65 / 65B		ADK	50 DD		ZBF 132 A 8/2	

 $\mathsf{B}=\mathsf{Drive}$ combination for pin connection


Dimensions

	d3 _{6g/7H}	d4 _{F8}	d5		d7 ¹⁾			h4 _	h4 _F	h2	h3	11	12		w1	w2	w3
LRS 20	0 N35 x 2 x 16	21	M12	10.2	M12 x 45	204.5	217	100	112.5	72	77	250	175	175	138	126	80
LRS 25	0 N45 x 2 x 21	30	M16	14	M16 x 55	255	270	100	115	90	97	306	220	220	156	138	85
LRS 35	0 N50 x 2 x 24	40	M16	14	M20 x 80	349.5	367	140	157.5	80	141	450	370	320	200	186	100


1) Length of the top-connection bolt

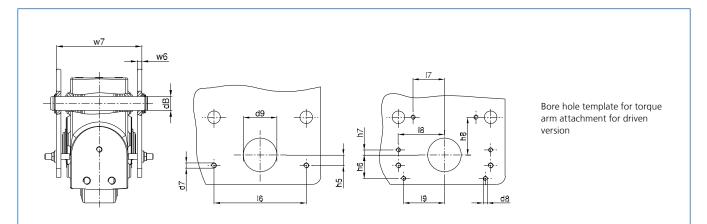
	Wheel	b1	b2	d1	d2	Weight [kg]
LRS 200	А	52	70	175	200	15.3
LK3 200	F	-	70	200	-	15.1
	A	55	80	220	250	27.6
LRS 250	F	-	80	250	-	26.7
	А	65	95	315	345	63.0
LRS 350	F	-	110	350	-	65.0

Driven LRS 200 / LRS 250 / LRS 350 with offset gearbox and ZBF travel motor

	Si	ze	Drive con	nbination				AC	AG	Ground	learance
	Gearbox	Motor						AC	AG		x _F
	AMK 20	ZBF 63/71	11	22	228	131	608	140	103	17.5	30
LRS 200	AIVIN 20	ZBF 80	13	-	238	131	664	157	103	9	21.5
LK3 200	AMK 30	ZBF 63/71	12	21	253	160	615	140	103	7.5	20
	AIMIN 50	ZBF 90B/100	14, 15	23, 25	281	160	715	196	133	-10.5	2
		ZBF 63	31	41	253	160	641	140	103	30	45
	AMK 30	ZBF 80/90A	-	43	263	160	697	157	103	30	45
LRS 250		ZBF 90B/100	33, 35	45	281	160	741	196	133	12	27
	AMK 40	ZBF 71	32	42	272	190	650	140	103	15	30
	AIVIN 40	ZBF 90B/100	34	44	300	190	750	196	133	12	27
		ZBF 80	52	62	312	250	769	157	103	16.5	34
LRS 350	ADK 50	ZBF 90B/100	54	64	330	250	813	196	133	16.5	34
		ZBF 132	55	65	363	260	955	260	173	16.5	34

Options and accessories from the Demag modular drive system

Thanks to its modular design, you can benefit from the entire Demag drives product range. In addition to offset gearboxes, you can also select angular gearboxes for special mounting requirements, for example.

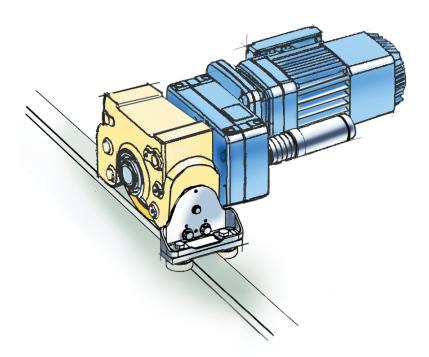

Demag pole-changing travel motors for line-fed operation are provided as standard drives. We can also supply you with the appropriate drive for inverter operation, too. The proven Demag KB conical-rotor motors for starting and stopping applications can also be fitted to the gearboxes.

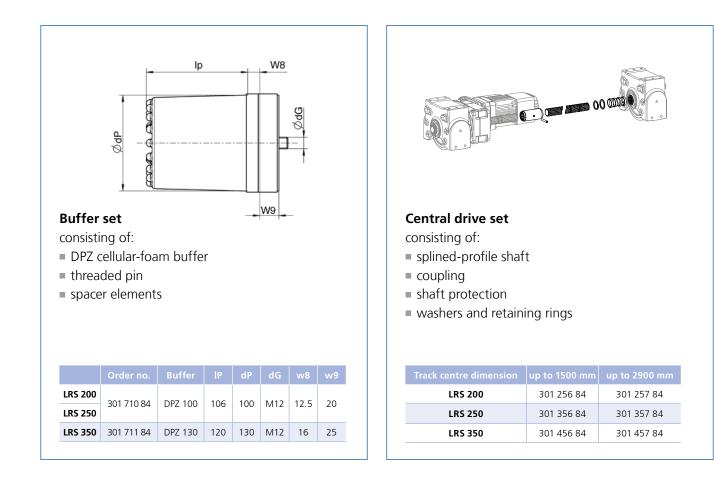
Our sales engineers and project engineering departments are pleased to help you with these special designs or for masses and travel speeds other than those shown in the tables – up to 240 m/min.

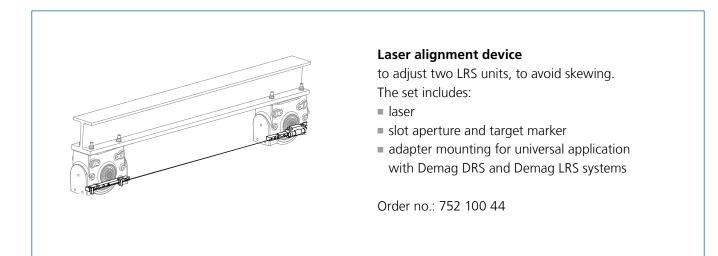
Options and accessories at a glance

Pin connection set

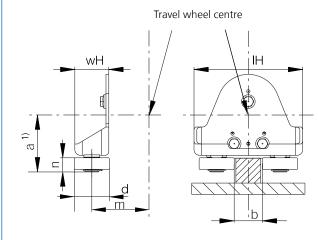
consisting of:


■ pins


- washers and retaining rings
- threaded adjusting pins and nuts

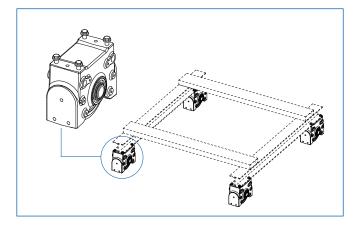

	Order no.	w6min	w7max		d7			h5
LRS 200	301 221 84	8	158	21 h8/D9	M10	50	175	20
LRS 250	301 321 84	10	185	30 h8/D9	M12	60	220	25
LRS 350 ¹⁾	301 421 84	10	230	40 h8/D9	M12	80	400	50

¹⁾ Pin connection set not required for LRS 350 with standard drive combination


	h6	h7	h8	17	18	19	d8				
LRS 200	41	10	68.5	58.5	92	77.5	M8				
LRS 250	56	12	90	75	110	97.5	M10				
LRS 350	Bore hole t	Bore hole template not required for LRS 350 with standard drive combination									

1) When a roller guide arrangement is used, ensure that it does not collide with the rail attachment.

Horizontal guide rollers

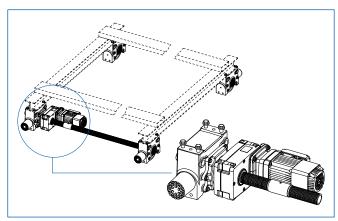

consisting of:

- roller bracket for fitting to LRS end face
- mounting screws
- Polyamide damping element (only for travel wheels with Hydropur tyres)

The permissible horizontal force of an LRS system fitted with a roller guide arrangement must not exceed 20% of the permissible wheel load.

	Order no.							
LRS 200 A	752 210 44	62	192	155	110	60	25	30-70
LRS 200 F	301 210 84	52	192	155	124	60	25	62-82
LRS 250 A	752 510 44	72	230	189	139	72	29	30-80
LRS 250 F	301 310 84	72	230	189	154	72	29	64-84
LRS 350 A	753 010 44	80	250	265	191	80	33	40-90
LRS 350 F	301 410 84	80	300	300	208	80	33	90-136

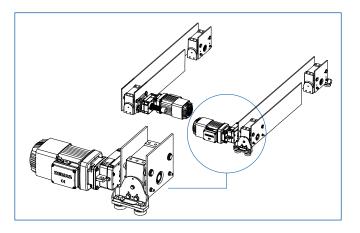
Selection and order examples – Demag LRS travel wheel system and accessories


Example 1 for a non-driven four-wheel carriage

A mass of 4,000 kg has to be moved on a concrete surface. This results in selection of a travel wheel with a Hydropur tyre. The mass to be moved is distributed over four wheels. The wheel load therefore amounts to 1,000 kg. Therefore, the recommended choice is LRS size 200 (permissible wheel load 1,200 kg). The standard top connection is ideal for connecting the LRS units to the superstructure.

Order list:

4 x LRS 200 F


Order no. 301 200 84

Example 2 for a four-wheel carriage with a central drive arrangement

A mass of 12,500 kg has to be moved with a main travel speed of 12.5 m/min. The positioning speed amounts to 3.1 m/min. The flat rails are laid with a track gauge dimension of 2.80 m. Due to the wheel load of 3,125 kg, spheroidal-graphite cast-iron travel wheels in size 250 are selected (permissible wheel load 3,500 kg). In order to keep the control system requirements to a minimum and still maintain simultaneous operation, a central drive arrangement is to be employed. This means that one motor has to move the entire mass of 12,500 kg. The appropriate drive with the drive combination 32 is selected from the drive selection table for the LRS 250 A (page 10). Buffers on the LRS units protect the travel unit in an emergency situation.

Order list:						
4 x LRS 250 A	Order no. 301 301 84					
1 x drive with drive combination 32, AMK 40 TD ZBF 71 A8/2 pole-changing geared motor incl. journal shaft, shaft protection, torque bracket and assembly material						
	Order no. 858 232 46					
1 x central drive set 2900	for max. track gauge 2.90 m Order no. 301 357 84					
4 x buffer set	Order no. 301 710 84					

Example 3 for a four-wheel carriage with two individual drives

A mass of 6,000 kg has to be moved with a main travel speed of 80 m/min on flat rails. Since guiet operation with gentle handling of the load is required, this results in selection of travel wheels with Hydropur tyres. The wheel load amounts to 1,500 kg. This results in selection of LRS 250 F (permissible wheel load 1,700 kg). For this travel speed, the selection table (page 10) shows a geared motor that can move a mass of up to 4,000 kg (drive combination 45). Two geared motors (individual drives) are selected with drive combination 45.

Note:

The drives have to be arranged opposite each other in order to avoid any skewing. Two horizontal guide roller arrangements are also needed to ensure that the carriage is guided on the rails. The optional pin connection set is selected to connect the LRS units to the superstructure.

Order list:	
4 x LRS 250 F	Order no. 301 300 84
4 x pin connection set	Order no. 301 321 84
2 x geared motor drive combined	nation 45,
AMK 30 DD ZBF 100 A8/2 po	le-changing geared
motor incl. journal shaft, shaft	t protection, torque
bracket and assembly material	l
	Order no. 858 245 46
2 x horizontal guide rollers	Order no. 301 310 84

39185-1


From CAD model and design support via the Internet to convenient online ordering

Simple integration thanks to CAD files

To make it easy for you to integrate the selected LRS components into your individual designs, we offer you 2D and 3D CAD files in various formats via the following Internet address: **www.demag-drivedesigner.com**. Use Drive Designer as a configurator for project engineering documents and for enquiries.

DEMAG			Drive Designer
	Logn Doubters - Rasternachland - Assett Earture	Meine Produkte	 Kontakt
Cevtrach Metzik Mit metriach Mit metriach Mit metriach Mit metriach Christian Christian Dauformechilossel	Auswahi Bauform LRS-250-F Grundbauform Wahen Se her de gewänschte Oruntbauforn des Rates aus.	√ she Artres •	Bestellung/Anfrage Antrebsauslegung mt CalDrive ®
Rad Baugoble Auswahl Bauform	Laufradaushkhrung Bite wähen Sie her die gewünschte Laufradausfihrung Antristesanbau (Zahnnabenprofil) Mit welchen Arbreb (Zahnnabenprofil) michten Sie das Rad antreben?	✓ F - Laufrad mt Hydropur-Ban(-	

2D- and 3D-formats are available.

sse 🔊 hetps://www.demag-shop		Dotras ?							
DEMAG							Der	ang Shop	-
Billome Warenkort	e em	lein Einkauf		Abmelden			► Kor	enia	
Devision 💌		rektbes		luna		• 🗑 O Feat	Pred	disuite eiteite Suche	_,
Designer Kettenzug DC Setzug DR		Varenkorb		Direktbestellu Bestell Hr,	Freitextbestellung Renerinung	Hirweis	Listenpreis	Listenpreis	
HDK Schwenkkran	POB.	Menge	MIC .	Bester-Hr.	Demensung	China	(gesant (
KBK Hängekran KBK Gradstücke	1		ST	30130184	Laufrad-System LRS250 A		260,00	1040,00	0
Produkteuche Suche nach Ident-Nummer				zentralen Lager					
am Produktset	2		ST	05023246	Antriebskonbinetion 32		1050,00	1050,00	0
Katalog		Der Artikel	ist im ;	zentralen Lager v	ertigber.				
Demag Dokumentations- system	3		ST	30135784	Zentralantrieboset -2900 LRS250		419,00	419,00	Ū
				zentralen Lager v					
	4		ST	30171084	Putterset DPZ100 LRS		18,00	72,00	0
		Der Artikel	ist in ;	zentralen Lager v	ertügber.				-
	5								6
	6								Ũ
	7								Ð
	0								1
	0								
	9								Ø

Online connection to the Demag Shop system

Benefit from the advantages of online ordering for selected LRS components at **www.demag-shop.com**

You can order the components you require via the spare part number. At the same time, you can specify both the delivery period as well as the shipping method. When you have ordered the components, we immediately advise our order number as well as the calculated delivery date.

Fax service

Your enquiry fax for the Demag LRS travel wheel system – the universal solution for many applications.

Terex MHPS GmbH

Wetter site Ruhrstrasse 28 58300 Wetter/Germany

I would like I am ordering Price information

Quotation

LRS 200 components	Order no.	Qty
LRS 200 A	301 201 84	
LRS 200 F	301 200 84	
Pin connection set	301 221 84	
Central drive set – 1500 mm	301 256 84	
Central drive set – 2900 mm	301 257 84	
Buffer set	301 710 84	
Horizontal roller guide LRS 200 A	752 210 44	
Horizontal roller guide LRS 200 F	301 210 84	
Rail sweeping system	301 732 84	
Laser alignment device	752 100 44	

Sent by

Company
.O. Box/ Street
own/Post code
Contact
elephone/extension
elefax
-mail

Drive	combinations	Order no.	Qty
11	AMK 20 TD ZBF 63 A 8/2	858 211 46	
12	AMK 30 TD ZBF 71 A 8/2	858 212 46	
13	AMK 20 TD ZBF 80 A 8/2	858 213 46	
14	AMK 30 DD ZBF 90 B 8/2	858 214 46	
15	AMK 30 DD ZBF 100 A 8/2	858 215 46	
21	AMK 30 TD ZBF 63 A 8/2	858 221 46	
22	AMK 20 TD ZBF 71 A 8/2	858 222 46	
23	AMK 30 DD ZBF 90 B 8/2	858 223 46	
24	AMK 30 DD ZBF 90 B 8/2	858 224 46	
25	AMK 30 DD ZBF 100 A 8/2	858 225 46	

LRS 250 components	Order no.	Qty
LRS 250 A	301 301 84	
LRS 250 F	301 300 84	
Pin connection set	301 321 84	
Central drive set – 1500 mm	301 356 84	
Central drive set – 2900 mm	301 357 84	
Buffer set	301 710 84	
Horizontal roller guide LRS 200 A	752 510 44	
Horizontal roller guide LRS 200 F	301 310 84	
Rail sweeping system	301 733 84	
Laser alignment device	752 100 44	

LRS 350 components	Order no.	Qty
LRS 350 A	301 401 84	
LRS 350 F	301 400 84	
Pin connection set	301 421 84	
Central drive set – 1500 mm	301 456 84	
Central drive set – 2900 mm	301 457 84	
Buffer set	301 710 84	
Horizontal roller guide LRS 200 A	753 010 44	
Horizontal roller guide LRS 200 F	301 410 84	
Rail sweeping system	301 733 84	
Laser alignment device	752 100 44	

Drive	combinations	Order no.	Qty
31	AMK 30 TD ZBF 63 A 8/2	858 231 46	
32	AMK 40 TD ZBF 71 A 8/2	858 232 46	
33	AMK 30 DD ZBF 90 B 8/2	858 233 46	
34	AMK 40 DD ZBF 100 A 8/2	858 234 46	
35	AMK 30 DD ZBF 100 A 8/2	858 235 46	
41	AMK 30 TD ZBF 63 A 8/2	858 241 46	
42	AMK 40 TD ZBF 71 A 8/2	858 242 46	
43	AMK 30 DD ZBF 80 A 8/2	858 243 46	
44	AMK 40 DD ZBF 90 B 8/2	858 244 46	
45	AMK 30 DD ZBF 100 A 8/2	858 245 46	

Drive	combinations for top connection	Order no.	Qty
52	ADK 50 TD ZBF 80 A 8/2	858 252 46	
54	ADK 50 DD ZBF 100 A 8/2	858 254 46	
55	ADK 50 DD ZBF 132 A 8/2	858 255 46	
62	ADK 50 TD ZBF 80 A 8/2	858 262 46	
64	ADK 50 TD ZBF 90 B 8/2	858 264 46	
65	ADK 50 DD ZBF 132 A 8/2	858 265 46	
Drive	combinations for top connection	Order no.	Qty
52B	ADK 50 TD ZBF 80 A 8/2	858 257 46	
54B	ADK 50 DD ZBF 100 A 8/2	858 258 46	
55B	ADK 50 DD ZBF 132 A 8/2	858 259 46	
62B	ADK 50 TD ZBF 80 A 8/2	858 267 46	
64B	ADK 50 TD ZBF 90 B 8/2	858 268 46	

Complete industrial drive solutions - from wheels to inverters

Demag geared motors

- as helical geared motors from 90 to 5800 Nm
- as angular geared motors from 120 to 12000 Nm
- as offset geared motors for 130 to 11500 Nm with cylindrical-rotor motors from 0.18 to 45 kW

Demag conical-rotor brake motors

for increased requirements such as extremely high switching frequencies and braking operation for outputs from 0.37 to 42 kW

Demag microspeed drives

with conical-rotor motors; for high speed stages and positioning with high stopping accuracy; speed ratios up to 500:1

Demag Dedrive Compact STO and Dedrive Pro frequency inverters

for AC drives with motor shaft outputs up to 560 kW; control of cylindrical and conical-rotor motors as single or groups of drives; current loads from 2.4 to 210 A or 4.2 to 544 A

Demag travel unit components

Modular systems for elements in materials handling installations and mechanical engineering applications without the need for any additional design work and production

- DRS wheel block system; many wheel variant and connection possibilities, high performance; from 2.75 t to 40 t
- RS wheel block system; with sheet-steel housing for special applications, also in high-temperature range up to 350 °C
- LRS travel wheel system; the simple system for the lower load range up to 6.5 t
- DWS wheel sets; for integration into hollow-profile sections or for corner-bearing arrangements; up to 60 t

Demag DCL-Pro compact line

Power feed system; designed for currents up to 200 A (100 % CDF); fitted with up to 7 conductors, as required; both for supplying mobile consumers with power as well as for transferring control signals